Transcriptional activity within a cell can be used to evaluate cell response to a ligand or promoter activity within a transgene or plasmid within a cell. Catalent has developed a relative potency bioassay using real-time quantitative reverse transcription (RT-qPCR) in a duplex format to assess relative transcription activity in cells treated with ligands or transgenic vectors. The assay utilizes two fluorescent dyes with minimally overlapping emission spectra that allow real-time monitoring of the gene expression of both target and normalizer genes. Notably, the assay simplifies the process by eliminating the need for mRNA purification, enabling more efficient and accurate analysis. Normalizing the qPCR cycle thresholds (CT) of the target transcript to the reference transcript allows the response curve to be generated and compared to a reference standard. The generation of a four-parameter fit curve analysis from raw qPCR cycle threshold data allows for the comparison of relative potency and assessment of suitability based on curve parallelism. Catalent has successfully implemented this assay platform to develop a reliable, accurate, and specific bioassay. It stands out for its linear response and reproducibility, making it a valuable tool for evaluating the relative potency of various test substances. Join us to explore how these robust cell-based potency assays can enhance your research and provide critical data on drug product potency.
New Strategies for a Better Glycosylation Profile
January 22nd 2025Glycan analysis provides key information on critical quality attributes that could affect stability, safety and efficacy of a protein therapeutic. Specific needs for understanding the glycosylation profiles change throughout the drug development process, but the requirement for high-resolution glycan information remains the same and is essential to help ensure product quality.