Cell culture media is a foundational component of any biotherapeutic manufacturing workflow, crucial for maintaining cellular health and viability, maximizing titers, and supporting high product quality. As such, building a biotherapeutic manufacturing process with an optimized basal medium and feed system is vital to achieving optimal results and accelerating the speed-to-market of your product. However, the process of finding the most suitable basal medium and supplementation strategy can be challenging, as it requires balancing many key cell culture process variables to achieve specific technical goals within budget and time constraints. This guide will provide an insight into each development stage and offer best practices to help you achieve your project goals on time and within budget.
Mastering Antibody-Drug Conjugates: BIOVECTRA's Approach to ADC and Complex Chemistry Manufacturing
December 19th 2024BioPharm International sat down with Jean-François Vincent-Rocan, Director of Complex Chemistry Process Development at BIOVECTRA, to discuss antibody-drug conjugate (ADC) manufacturing. Due to their complex manufacture and supply chain management, JF emphasizes the need for a company that greatly understands the challenges and offers solutions that maintain quality and reliability. He also mentions what advancements are to come in this field and how best to stay ahead of a rapidly growing treatment option.
Harnessing mRNA as a Readout to Develop Robust BioPotency Assays
December 12th 2024Transcriptional activity within a cell can be used to evaluate cell response to a ligand or promoter activity within a transgene or plasmid within a cell. Catalent has developed a relative potency bioassay using real-time quantitative reverse transcription (RT-qPCR) in a duplex format to assess relative transcription activity in cells treated with ligands or transgenic vectors. The assay utilizes two fluorescent dyes with minimally overlapping emission spectra that allow real-time monitoring of the gene expression of both target and normalizer genes. The assay does not require purification of the mRNA produced by the cells once lysis has occurred. Normalizing the qPCR cycle thresholds (CT) of the target transcript to the reference transcript allows response curve to be generated and compared to a reference standard. The generation of a four-parameter fit curve analysis from raw qPCR cycle threshold data allows for comparison of relative potency and assessment of suitability based on curve parallelism. The assay platform has been used by Catalent to qualify a repeatable, accurate, linear, and specific bioassay for assessing relative potency.