Leveraging Post-Translational Modifications Biofunctional Assays For The Characterization Of Charged Variants

News
Article

Sponsored Content

The manufacture of protein-based drugs is complex and relies on using biological host systems. This can result in small changes in protein structure during production and formation of protein variants that can have a large impact on functionality. This heterogeneity — variations in the protein size, charge or structure — can significantly impact the safety and activity of the final biotherapeutic or biosimilar therapy, potentially hindering their beneficial effect. It is vital that charged variant profiles of biologics are adequately characterized, as many post-translational modifications (PTMs) may alter the charge of the molecule, in turn impacting its stability, pharmacokinetics and pharmacodynamics. In this article, Catalent explores protein variants, focusing on charged variants, by outlining their impact on protein-based drugs, and explain how specific characterization techniques can be used to determine product safety and efficacy.

Related Content

Site Logo

Webinar: Best Practices, Strategies & Utilization of Novel Biological Responses for Robust Cell-Based Potency Assays

December 12th 2024
Article

Transcriptional activity within a cell can be used to evaluate cell response to a ligand or promoter activity within a transgene or plasmid within a cell. Catalent has developed a relative potency bioassay using real-time quantitative reverse transcription (RT-qPCR) in a duplex format to assess relative transcription activity in cells treated with ligands or transgenic vectors. The assay utilizes two fluorescent dyes with minimally overlapping emission spectra that allow real-time monitoring of the gene expression of both target and normalizer genes. Notably, the assay simplifies the process by eliminating the need for mRNA purification, enabling more efficient and accurate analysis. Normalizing the qPCR cycle thresholds (CT) of the target transcript to the reference transcript allows the response curve to be generated and compared to a reference standard. The generation of a four-parameter fit curve analysis from raw qPCR cycle threshold data allows for the comparison of relative potency and assessment of suitability based on curve parallelism. Catalent has successfully implemented this assay platform to develop a reliable, accurate, and specific bioassay. It stands out for its linear response and reproducibility, making it a valuable tool for evaluating the relative potency of various test substances. Join us to explore how these robust cell-based potency assays can enhance your research and provide critical data on drug product potency.

© 2024 MJH Life Sciences

All rights reserved.